How to navigate current treatment for melanoma in a real world setting

Dr Pippa Corrie

Consultant and Affiliated Associate Professor in Medical Oncology

Cambridge University Hospitals NHS Foundation Trust

Melanoma – What's the problem?

Two classes of drugs tested in clinical trials have revolutionized how we treat melanoma patients today

IMMUNE CHECKPOINT INHIBITORS

BRAF TARGETED THERAPY

Melanoma subtypes and molecular taxonomy

	BRAF	NRAS	КІТ	GNAQ or GNA11
Cutaneous	45%*	20%	0-2%	-
Mucosal (1.5%)	5%	15%	10%	-
Acral (5%)	15%	15%	10%	-
Uveal (5%)	rare	rare	-	80%

*BRAF and NRAS mutations are mutually exclusive

Davies et al. Nature 2002;417:949-954; Curtin et al. NEJM 2005; Curtin et al. JCO 2006; Van Raamsdonk et al., NEJM 2010

Molecular taxonomy of cutaneous melanoma

Position 600 mutations	Frequency	Association
V600E	80%	Inverse relationship between prevalence and age
V600K	< 20%	Advancing age/ chronic sun damage
V600R	< 5%	Increased propensity to metastasise to lungs and brain?
Other	<1%	

Different genotypes exist within *BRAF*-mutant metastatic melanoma, representing biologically and clinically discrete subtypes, suggesting distinct etiology and behaviour

Menzies AM et al Clin Cancer Res 2012; 18: 3242-9

Molecular taxonomy of cutaneous melanoma

BRAF V600 mutation	Frequency	Response to BRAFi	Response to immunotherapy
V600E/K	40%/5%	++	++
Other	5%	-	++
BRAF WT	50%	-	++

BRAF mutation status does not influence response to immune checkpoint inhibitors

What has been achieved in the last 15 years?

- Advanced melanoma:
 - survival gains from median <1 year to >3 years, with potential for cure in some patients
- Early melanoma:
 - 50% reduction in risk of recurrence

Michielin O, et al. *J ImmunoTher Cancer* 2020;8:e000948

Melanoma clinical practice

The Real World: Case History

- 59 y Female
- PS 0
- No significant past medical history
- FH: Father died from lung cancer (heavy smoker)

• Oct 2019:

- Pigmented lesion on posterior chest wall
- Enlarging and bleeding
- pT4b, AJCC Stage IIC

• Sep 2020:

- Palpable node in right axilla surgical axillary lymph node clearance
- Resected AJCC Stage IIIC melanoma

November 2020:

Commenced adjuvant Pembrolizumab

• January 2021:

- Surveillance scan identified solitary cerebellar metastasis
- Treated with stereotactic radiotherapy

• January 2021:

- Surveillance scan identified solitary cerebellar
- Treated with stereotactic radiotherapy

• July 2021:

- Surveillance imaging identified multiple lung and liver mets

- July 2021:
 - Commenced ipilimumab + nivolumab

- July 2021:
 - Commenced ipilimumab + nivolumab
- September 2021:
 - Adrenal insufficiency treated with steroid replacement, longterm

- July 2021:
 - Commenced ipilimumab + nivolumab
- September 2021:
 - Adrenal insufficiency treated with steroid replacement, longterm
- October 2021:
 - Restaging scans confirmed early partial response

• June 2023:

- Complete radiological and metabolic response
- Immunotherapy stopped after completing 2 years of treatment

• September 2024:

- Continues in complete remission, with good quality of life

Let's Discuss..

- Management of early stage melanoma
 - Adjuvant therapy
 - Neoadjuvant therapy
- Management of advanced melanoma

Approved treatments for melanoma in the adjuvant setting

Adjuvant therapy with checkpoint inhibitors and BRAF targeted therapy significantly improves relapse-free survival of resected stage III/IV melanoma

1. Eggermont AMM et al, Lancet Oncol 2015; 2. Eggermont AMM et al, Lancet Oncol 2021; 3. Weber J et al NEJM 2017; 4. Dummer R et al, NEJM 2020

Adjuvant therapy with checkpoint inhibitors and BRAF targeted therapy significantly improves distant metastasis-free survival of resected stage III melanoma

1. Eggermont AMM et al. DOI:https://doi.org/10.1056/EVIDoa2200214; 2. Dummer R et al. NEJM 2020; 383: 1139-48

COMBI-AD final results: Overall survival (ITT)

End of study 31 July 2023. Median follow-up: D+T 100.0 (0-125) months; Placebo 82.5 (1-122) months.

Long GV et al. NEJM 2024

Adjuvant systemic therapy is routinely available for resected stage III/IV melanoma patients

- Dabrafenib with trametinib is recommended, within its marketing authorisation, as an option for the adjuvant treatment of resected stage III BRAF V600 mutation-positive melanoma in adults
- Pembrolizumab is recommended, within its marketing authorisation, as an option for the adjuvant treatment of completely resected Stage III melanoma with lymph node involvement in adults
- Nivolumab is recommended, within its marketing authorisation, as an option for the adjuvant treatment of completely resected melanoma in adults with lymph node involvement or metastatic disease

Which adjuvant therapy to select?

- Consider
 - BRAF mutation status
 - Most mature data
 - Potential survival benefit?
 - Real world comparison favours targeted therapy
 - Lodde et al, EJC 2023: 2 year RFS 49% (PD-1) vs 67% (TT); Risk of recurrence HR 2.0
 - Less chance of cure in the advanced setting
 - Consider BRAF^{V600} mutation variant

Combi-AD Subgroup Analysis: Effect of treatment on overall survival (ITT)

Subgroup	Category	Treatment (n/N)	HR (95% CI)	
Age	<65 Years Old ≥65 Years Old	D + T (95/353); Placebo (107/359) D + T (30/85); Placebo (29/73)	0.80 (0.61, 1.06) 0.80 (0.48, 1.34)	
Gender	Male Female	D + T (72/244); Placebo (79/239) D + T (53/194); Placebo (57/193)	0.77 (0.56, 1.06)	
Mutation	BRAF V600E BRAF V600K	D + T (110/397); Placebo (129/395) D + T (15/41); Placebo (7/37)	0.75 (0.58, 0.96) 1.95 (0.84, 4.50)	
Ulceration	Ulceration No Ulceration	D + T (51/179); Placebo (63/177) D + T (72/253); Placebo (72/249)	0.68 (0.47, 0.98)	
Nodal metastatic mass	Micrometastasis Macrometastasis	D + T (34/152); Placebo (42/157) D + T`(43/158); Placebo (55/161)	0.74 (0.47, 1.16)	
Disease stage using AJCC7	Stage IIIA Stage IIIB Stage IIIC	D + T (21/83); Placebo (16/71) D + T (40/169); Placebo (57/187) D + T (62/181); Placebo (62/166)	0.96 (0.50, 1.84) 0.75 (0.51, 1.12) 0.73 (0.51, 1.04)	
Disease stage using AJCC8	Stage IIIA Stage IIIB Stage IIIC Stage IIID	D + T (10/50); Placebo (7/39) D + T (35/145); Placebo (48/154) D + T (70/217); Placebo (73/214) D + T (8/22); Placebo (7/17)	0.89 (0.33, 2.36) 0.75 (0.49, 1.15) 0.80 (0.57, 1.11) 0.71 (0.25, 2.02)	
	-		0.25 0.5 1 2 Favors D + T Favors Place	4 bo

Which adjuvant therapy to select?

- Consider
 - BRAF mutation status
 - Contra-indications to immunotherapy
 - Local resources
 - Patient preference

AJCC 8 Stage II and III

Gershenwald JE et al. CA Cancer J Clin. 2017; 67:472-492

Outcomes after Resection of Stage II and III Melanoma

^aConfirmatory cohort. AJCCv8, American Joint Committee on Cancer version 8; CMMR, Central Malignant Melanoma Registry; MSS, melanoma-specific survival. 1. Garbe C, et al. J Clin Oncol 2022. doi: 10.1200/JCO.22.00202. 2. Garbe C, et al. J Clin Oncol 2020;38:2543-2551. 3. Gershenwald JE, et al. CA Cancer J Clin 2017;67:472-92. KEYNOTE-716: The efficacy and safety of pembrolizumab in patients with completely resected Stage IIB or IIC melanoma were studied in a multicentre, randomised, double-blind, placebo-controlled Phase 3 trial¹

Patients underwent imaging at 6 months from the date of randomisation, then every 6 months from years 2 to 4 after randomisation, and then once in year 5 from or until recurrence, whichever came first, or as clinically indicated.

1. Luke JJ et al. Lancet 2022;399:1718-1729

RFS, DMFS, and PRFS2 in Part 1

PRFS2 was defined as time from randomization to first disease progression beyond the initial unresectable disease recurrence, second recurrence, or death. Data cutoff date: Feb 16, 2024.

KEYNOTE-716: The safety profile of pembrolizumab was as previously seen in stage III $^{\rm 1}$

	Pembrolizumab		Placebo	
Events, n (%)ª	N = 483		N = 486	
All	462 (96)		445 (92)	
Treatment-related	400	(83)	309 (64)	
Grade ≥3	83 (17)		24 (5)	
Discontinued	77 (16)		12 (2)	
Died	0		0	
Immune-mediated events and infusion reactions	182 (38)		45 (9)	
Treatment-related events ≥15%	All	Grade ≥3	All	Grade ≥3
Fatigue	103 (21)	1 (<1)	92 (19)	1 (<1)
Hypothyroidism	77 (16)	0	13 (3)	0
Arthralgia	81 (17)	2 (<1)	39 (8)	0
Pruritus	119 (25)	3 (1)	52 (11)	0
Rash	78 (16)	7 (1)	34 (7)	1 (<1)
Diarrhea	90 (19)	5 (1)	56 (12)	1 (<1)

IA1 Data Cutoff: December 04, 2020.

1. Long GV et al. Presented At American Society Of Oncology Meeting June 3 -7, 2022

Number Needed to Treat by RMST for RFS and DMFS

Calculation of NNT based on RMST

$$NNT_{RMST}(t) = \frac{1}{(RMST_{P}(t)/RMST_{C}(t)) - 1}$$

For this analysis:

RMST_p(t) = Total area under the Kaplan-Meier curve to 60 months in the pembrolizumab arm

RMST_c(t) = Total area under the Kaplan-Meier curve to 60 months in the placebo arm

RMST, restricted mean survival time. NNT calculated the number of additional patients that need to be treated to produce a beneficial result or prevent a harmful event in 1 additional patient. NNT was analyzed by Victoria Wurcel of MSD Argentina, Mónica María Rojas Rojas of MSD Colombia, and Adelphi Values PROVE, Bollington, UK.

CheckMate 76K: RFS and DMFS (27mo min f/up)

RFS ^a	NIVO	PBO
Events, n/N	133/526	95/264
Median, months (95% CI)	NR (40.7–NR)	NR (36.1–NR)
Stratified HR (95% CI)	0.62 (0.47–0.80)	

DMFS ^b	NIVO	PBO
Events, n/N	96/526	61/264
Median, months (95% CI)	NR	NR
Stratified HR (95% CI)	0.72 (0.52–1.00)	

^aRFS was defined as the time between randomization and first recurrence (recurrence events included local, regional, or distant recurrence, new primary melanomas [including *in situ*], and death [due to any cause]). ^bDMFS was defined as time between randomization and first distant recurrence or death (due to any cause).

Other Considerations..

Ranked by greatest differential predictive impact of NIVO vs PBO on RFS¹

Morton & Cochran, 1990

Predictive Factors?

Role of SLNB?

Accessing patients earlier in the pathway

- Raise awareness wrt recurrence risks in stage II melanoma
 - Stage IIC = Stage IIIB in terms of survival outcomes
 - 5 year melanoma specific survival: IIC = 77-82%, IIIB = 74-83%
- Discuss opportunities for treating, in particular, stage IIC patients
 - Number needed to treat to benefit 1 patient likely <8¹
- The fine balance between benefits and risks for individual patients requires careful consideration
- Consider biological biomarkers of response
 - TMB, IFNγ signature

Individualised Neoantigen Therapy

HLA, human leykocyte antigen: mRNA, messenger RNA; CRF, open reading frame; PCV, personalized cancer vaccine; RFS, recurrence-free survival; TCR, T-cel receptor, 1; With TC, Kühnel F. Front Immunol. 2017;8:1848. 2; Baden LR, et al. N Engl J Med. 2021;384(5):403-416.

6

The More The Better

More isn't always better, sometimes more is just more.
KEYVIBE 010: Interim and only analysis

Mechanism of Action: Anti-TIGIT mAb (MK-7684, Vibostolimab)

- Pre-clinical models using anti-TIGIT monoclonal antibodies indicate that FcyR engagement is required for maximal anti-tumor response by TIGIT blockade¹
- The presence of FcγR engagement is associated with enhanced myeloid cell activation¹
- MK-7684 (vibostolimab) is a humanized, IgG1 monoclonal antibody that binds TIGIT and blocks its interaction with its ligands, CD112/nectin 2 and CD155/PVR²
- MK-7684A is a coformulation of vibostolimab with pembrolizumab
- Blocking additional ligand-receptor interactions, such as PD-L1/PD-1, may enhance the antitumor response³

1. Han J et al. Frent Immunol. 2020; 11: 572405; 2: Golan T et al. Presented at STIC 2018. 3: <u>Hung AJ, et al. Oncommunology; 2018;7(3):e1466769</u> Image adapted from <u>Anderson AC et al. Immunity; 2016;44(5):989-1004</u> and Harjungsa H and Guillerey C. Clinical and Experimental Immunology; 2018;200:108-119

Grade 3-5 TRAEs:

- 16% vibostolimab/pembrolizumab
- 7% pembrolizumab

G Long KEYVIBE-010 SMR 2024

A Word of Caution... Results of the Swedish Nationwide Registry-based Study

1371 patients with stage III melanoma in Sweden, 2016-2020; 2 cohorts defined by introduction of adjuvant therapy. F/up until end 2021 Helgadottir H, et al. JNCI 2023

Lee R et al, Annals Oncol 2018;29: 490-6

Proportion oftDNAsample results returned <=10 working days from sample being taken

Randomised >= 50 patients within a 12 month period Review recruitment limitations & review Phase III criteria

95% of samples returned within 10 working days

Neoadjuvant therapy – Strong biological rationale

Versluis JM et al, Nature Medicine 2023

Checkpoint inhibitors in high-risk stage III resectable melanoma

SWOG S18011

1. Patel SA, et al. N Engl J Med. 2023;388:813–823; 2. Blank CU, et al. N Engl J Med. 2024;00:00–00. *1-yr EFS rates estimated from KM curve.

Presented by Georgina V Long @ProfGLongMIA

Not regulatory approved in Norway

Neoadjuvant Therapy – The Future?

- Strong biological rationale
- Model for drug development & biomarker testing
- Personalisation of treatment
 - Early identification of patients with responsive or resistant disease
- De-escalation of subsequent interventions
 - Omission of unnecessary surgery
 - Reduced need for adjuvant radiotherapy
 - Avoidance of protracted adjuvant systemic therapy
- Gains in patient QOL
- Intelligent use of finite resources

Melanoma – What's the Problem?

The advanced melanoma treatment revolution

Immune checkpoint inhibitors and BRAF targeted therapy have significantly improved 3-year overall survival for patients with stage IV melanoma

1. Middleton et al, 2000; 2. Hodi et al, 2010; 3. Chapman et al, 2011; 4. Hauschild et al, 2013; 5. Larkin et al, 2014; 6. Robert et al, 2019a; Robert et al, 2019b; Wolchock et al, 2022

First line therapy for patients with metastatic melanoma: how do we choose?

CheckMate 067: Established ipilimumab+nivolumab as the gold standard of care

~30 months in both NIVO-containing arms)

*The study was not powered for a comparison between NIVO and NIVO+IPI

CHECKMATE 067 trial long term outcomes: Some patients may be cured

10 year f/up = cure?

Wolchock JD, et al. J Clin Oncol 2022; 40: 127-37

49

CHECKMATE 067 trial long term outcomes: NIVO+IPI efficacy must be considered alongside toxicity

	Nivo+lpi	Nivo	lpi
Treatment-	96% Any	86% Any	86% Any
related AEs	59% G3-4	21% G3-4	28% G3-4

G3= severe G4= life threatening

Wolchock JD, et al. NEJM 2017; 377: 1345-56; J Clin Oncol 2022; 40: 127-37

CHECKMATE 067 trial has taught us to recognize and manage complex immune-related adverse events

Time to onset of grade >3 irAEs. Larkin J, et al. ECC 2015; abstract 3303.

CHECKMATE 067 trial has taught us to recognize and manage complex immune-related adverse rvents

Time to onset of grade ≥3 irAEs. Larkin J, et al. ECC 2015; abstract 3303

Larkin J, et al. 2019; 381: 1535-46

CHECKMATE 067 trial long term outcomes: Does *BRAF* status matter?

Wolchock JD, et al. J Clin Oncol 2022; 40: 127-37

CHECKMATE 067 trial: What about PD-L1 expression?

(D) PD-L1 expression level <1%

In a large-scale, Danish population-based study, improved clinical outcomes with nivo+ipi was not evident in patients with ≥1% tumor PD-L1 expression

Ellerbaek E, et al. E J Cancer 2024; 198: 113476

Can we improve outcomes by targeting other immune checkpoints?

Relatlimab blocks LAG-3 and restores T cell function

RELATIVITY 047: Nivolumab + Relatlimab (Opdualag) improves relapsefree survival and maintains quality of life compared with nivolumab alone

Tawbi H, et al. NEJM 2022; 386: 24-34; Schadendorf D, et al. EJC 2023; 187: 164-173

RELATIVITY-647 (INCTERCIPALITY): Median-follow-up: 25.3 months. Descriptive analysis, Statistical model for Mit; stratified Corporational Nazord model, Stratified by LAG 3, BAP multation status, and AJCC H stage. #O-L1 was removed from stratifications Security II bit strategieses with 1 Spectra.

ELATIVITY GP INCTEMPROX. Median follow up: 25.3 membre. Seconder wavelyne. Statistical model for ML interfield Corpreportional hazard model. Stratified by LAG-3, BRVP mutation statur, and AJCC M stage. PG-L1 was removed from stratification secure in tell studyment with - 19 patients.

56

EMA: Opdualag is indicated for the first line treatment of advanced (unresectable or metastatic) melanoma in adults and adolescents 12 years of age and older with tumour cell PD L1 expression < 1%

		PFS by BICR			OS				
		NIVO + RELA	NIVO			NIVO + RELA	NIVO		
		Eve (no. of p	ents Datients)		Instratified HR (95% CI)	Eve (no. of p	ents patients)		Unstratified HR (95% CI)
Overall		204 (355)	233 (359)		0.78 (0.64-0.94)	137 (355)	160 (359)		0.81 (0.64-1.01)
_AG-3 expression	≥ 1%	151 (268)	164 (269)		0.80 (0.64-1.00)	94 (268)	111 (269)	•	0.78 (0.59-1.03)
	< 1%	53 (87)	69 (90)		0.72 (0.50-1.03)	43 (87)	49 (90)		- 0.88 (0.59-1.33)
PD-L1 expression	≥ 1%	80 (146)	78 (147)		0.96 (0.70-1.31)	48 (146)	56 (147)		0.84 (0.57-1.24)
	< 1%	124 (209)	155 (212)	—	0.68 (0.53-0.86)	89 (209)	104 (212)	-	0.78 (0.59-1.04)
BRAF mutation status	Mutant	78 (136)	91 (139)		0.77 (0.57-1.05)	41 (136)	51 (139)	-	0.76 (0.51-1.15)
	Wild-type	126 (219)	142 (220)		0.78 (0.61-0.99)	96 (219)	109 (220)		0.83 (0.63-1.09)
AJCC stage	M0/ M1any[0]	124 (233)	143 (237)		0.77 (0.60-0.97)	67 (233)	83 (237)	-	0.77 (0.56-1.07)
	M1any[1]	80 (122)	90 (122)		0.76 (0.56-1.03)	70 (122)	77 (122)		0.81 (0.59-1.12)
			0.0 NIVO	0.5 1.0 1.5 + RELA ← → NIVO	2.0			0.5 1.0 + RELA ↔	1.5 2.0 NIVO

RELATIVITY-047

Indirect comparison of Nivolumab + Relatlimab versus Nivolumab + Ipilimumab – *interpret with caution!*

Factors determining choice of first line treatment for metastatic melanoma

- Patient factors
 - Age
 - Performance status
 - Co-morbidities
 - History of autoimmune disease
- Tumour characteristics
 - PD-L1 status
 - BRAF status

- Prior therapy
 - Adjuvant
 - Neoadjuvant

Optimal treatment for BRAF mutant stage IV melanoma

Robert C, et al. NEJM 2019; 381: 626-36; Dummer R, et al. 2022: 40: 4178-88

Ugurel S, et al. E J Cancer 2020; 130: 126-38

BRAF mutant metastatic melanoma

What is optimal first line therapy?

SEquential COMBo Immuno and Target therapy (SECOMBIT) Study (NCT02631447)

Ascierto PA, et al. J Clin Oncol 2022; 41: 212-21

BRAF mutant metastatic melanoma

• What is optimal first line therapy?

DREAMSEQ: Study design Open-label, randomised phase 3 trial

Atkins et al, J Clin Oncol 2023; 41: 186-99

Which patients are best treated with BRAFtargeted agents today?

- 1st Line Metastatic
 - rapidly progressing metastatic disease, high disease burden (including multiple brain metastases) and/or poor performance status
 - Elderly/frail patients
 - contra-indications to immunotherapy
- 2nd Line Metastatic
 - On progression after 1st line immunotherapy

1. Ascierto PA et al, 2019; 2. Gutzmet R et al, 2020; 3. Dummer R et al, 2022; 4. Long GV et al, 2019; 5. Diab A et al, 2023; 6. Arance A et al, 2023

Where Next?

REGENERON®

IMMUNOCORE

Shaw, H et al, ASCO 2024 Abstract 9535

Survivorship on and after immunotherapy: A growing area of importance

66

Annals of Oncology 28 Supplement 4: iv119-iv142, 2017 doi:10.1093/annonc/mdx225

CLINICAL PRACTICE GUIDELINES

Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

J. B. A. G. Haanen¹, F. Carbonnel², C. Robert³, K. M. Kerr⁴, S. Peters⁵, J. Larkin⁶ & K. Jordan⁷, on behalf of the ESMO Guidelines Committee^{*}

Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update

Bryan J. Schneider, MD¹; Jarushka Naidoo, MD²⁻³; Bianca D. Santomasso, MD, PhD⁴; Christina Lacchetti, MHSc²; Sherry Adkins, MS⁴;
Milan Anadkat, MD¹; Michael B. Atkins, MD¹ Kelly J. Brassil, PhD⁶; Jeffrey M. Caterino, MD, MPH⁴; Ian Chau, MD¹⁵;
Mariane J. Davies, (DN¹⁺); Marc S. Emsthöf, MD¹⁵; Letter Focher, MD¹; Monalisa Ghosh, MD³¹; Ishmael Jajeseimi, DO, MS¹⁴;
Jennifer S. Mammen, MD, PhD¹⁵; Aung Naing, MD⁶, Loretta J. Nastoupil, MD⁶; Tanyanika Phillips, MD¹⁶; Laura D. Porter, MD¹⁷;
Cristina A. Reichner, MD¹⁶; Canole Seigel, MBA¹⁶, Jung-Min Song, MSN, RN, CNS¹⁶; Alexander Spira, MD, PhD¹⁷;
Maria Suzez-Almazor, MN¹⁶; Umang Sami, MD²⁶; Jung A. Thompson, MD²⁶; Praveen Vikas, MD²⁶; Yinghong Wang, MD⁶; Jeffrey S. Weber, MD, PhD²⁵; Pauline Funchain, MD³⁰; and Kathryn Bollin, MD²⁶

Pinato DJ, et al. JAMA Oncol 2019; 5: 1774-8

Bjork JR, et al. Nat Med 2024; 30: 785-96

How much treatment is needed?

Can we predict response or toxicity?

CTAP (26/07): no features of colitis; small bowel thickening

Flexi sig (27/07): mild non-specific chronic inflammation

Flexi sig (17/08): patchy mild to moderate active inflammation with increased crypt apoptosis; CMV IHC negative

OGD (22/08): moderate to severe active chronic inflammation with mucosal erosions and increased crypt apoptosis in duodenum; minor reactive changes in stomach; CMV IHC negative

Adeno/ EBV/ CMV PCR (23/08): negative

Stool sample (27/07; 10/08; 15/08): negative for Salmonella, Shigella, Campylobacter & Escherichia coli O157, Cryptosporidium, C.difficile

Brain Metastases: Optimal management is informed by Checkmate204 and ABC phase II trials

	A (ipi+nivo)	B (nivo)	C (nivo)
All patients	n=35	n=25	n=16
ICR	51%	20%	6%
5-yr IC PFS	46%	15%	6%
5-yr OS	51%	34%	13%
Rx naïve	n=27	n=19	n=4
ICR (Rx naïve)	59%	21%	25%
5-yr IC PFS (Rx naïve)	52%	14%	a.
5-yr OS (Rx naïve)	55%	40%	25%
TRAE G3/4	63%	20%	13%

Asymptomatic pts were randomized to cohorts A or B Pts who were symptomatic, failed local therapy or had leptomeningeal disease were allocated to cohort C

Long GV et al, ASCO 2021 abstract 9508

Tawbi HA et al, Lancet Oncol 2021;22: 1692-1704

When first line anti-PD1 based therapy fails..

When first line anti-PD1 based therapy fails..SWOG1616 sets a bar

	lpi+Nivo (N=70)	lpilimumab (N=24)	
6 mo PFS	34%	13%	HR 0.63 (90% CI 0.41-0.97) p=0.04
ORR	28%	9%	p=0.05
OS			HR 0.83 (90% CI 0.50-1.39) p=0.28
≥ Grade 3 AEs	57%	35%	
CD8 T cell infiltrate			No difference in baseline or changes with treatment between responding and non-responding patients

Not regulatory approved in Norway
Tebentafusp – TebeAM trial is currently recruiting Soluble gp100 T Cell Receptor K_~24 pM Targeting end Residence T ~24 hrs at 37ºC 3 cell cel Rand Cancer Cancer cell cell Sand: CD3 Effector end 2010 Peptide-Anti-CD3 end HLA [2] [1] K_n nM Residence T_v mins Immune synapse Cancer 2010 cell cell cell 6010 Tebentafusp and Lytic granules [3] [4] Tebe+Pembro R Standard of Care

Predictive drug-response signature

- . From proprietary MELRESIST study
- Cross-validated with 3 other studies .

Prediction across clinical studies

0.75-

0.50

0.25

Non-responder

 91% predictive across melanoma studies · Also predictive in lung cancer

Nine bacteria drive response

- . .

Nine bacteria selected as therapeutic

- 4 new species

-log top

Significal

9 Lead Bacteria

MB097 potent anti-tumour efficacy

- Synergises anti-PD1 efficacy in mouse syngeneic tumour model
- · Cellular assays show multifunctional immunological mechanism

Responder Robinson M et al, J Immunother Cancer 2020; 8 (suppl 3):A404

Study Design

Same treatment:

The "no preconditioning" cohort: Goes straight to treatment

For both cohorts - up to 24 weeks, MB097 (2 oral caps/d) +

0.0 0.2 0.4 0.6

Effect size

pembrolizumab i.v. g3w

-0.2

The preconditioning cohort: Gets 5d oral vancomycin 125mg gid followed by 2 days washout (w/o)

Primary end point: Safety Secondary endpoints: Efficacy; engraftment S: Screening R: Randomization EOT: End Of Treatment

For Non- Responders:

Safety FU (SOC)

For Responders:

Extended Treatment Period

Up to 81 additional weeks on

pembrolizumab only

pembrolizumab only, no MB097

Up to 12 weeks in the safety follow-up period receiving Standard of Care (SOC)

Tumour Infiltrating Lymphocytes (TILs) generate durable responses in pretreated melanoma patients

Sarnaik AA, et al. J Clin Oncol 2021; 39: 2656-65)

Rohaan MW, et al. NEJM 2022; 387: 2113-25

SUMMARY

- With so many new approvals for both early and advanced melanoma, navigating the treatment landscape is increasingly challenging
- One size does not fit all: the goal is to personalise therapy, taking into account individual host and tumour characteristics, as well as patient preference
- This requires a multidisciplinary approach, involving medics, surgeons, pathologists, scientists, radiologists and specialist nurses, as well as public health physicians
- Despite considerable advances, many patients continue to die from this disease, so clinical trials remain a priority treatment option